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Propagation of axisymmetric normal longitudinal waves in an in"nite optical
"ber with a thin boundary layer is considered. Properties of these waves (pro"les,
dispersion curves) are obtained by both numerical and analytical methods.
Coincidence of the results from numerical and analytical methods is found. It is
shown that one or two waves can propagate along the "ber depending on
properties of the boundary layer, which corresponds to one or two branches of
dispersion curve. An expression for calculation of cut-o! frequency for second wave
is obtained.
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1. INTRODUCTION

This problem arises in the study of acoustical properties of optical "bers. The
optical "bers being studied consist of a glass core and polymer cladding. The radius
of the glass core R is about 2}150 lm; The thickness of the cladding H is about
50}500 lm.

There is an opinion [1] that a boundary layer appears at the border
&&glass-polymer'' in an optical "ber. The thickness of this layer is about 1}5 lm
according to estimations, given in reference [1]. The possibility of the existence of
such a layer has not been taken into account in previous works [2]. The purpose
of this paper is to study the in#uence of the boundary layer on acoustical properties
of optical "bers.

For this purpose it is convenient to regard the optical "ber with boundary layer
as a three-layered waveguide.

Due to the cylindrical symmetry of the system it is natural to use cylindrical
co-ordinates Z, r, h, where the Z-axis coincides with the "ber axis, r is the radial
co-ordinate and h is the angular co-ordinate.

This paper deals with waves

;
r
";

0r
(r)exp(iut!ikr), ;

z
";

0z
(r)exp(iut!ikr), (1, 2)

where k"2n/j, u"2n/¹, ;
r
and ;

z
are the radial and axial components of the

displacement vector.
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The general formulation of the problem of sound propagation is traditional:
equations of motion of each layer of waveguide should be solved, continuity of
tensions p

rr
, p

rz
and displacements ;

r
, ;

z
at the borders between layers should be

taken into account and the following boundary conditions should be satis"ed:

p
rr
(B)"0, p

rz
(B)"0. (3, 4)

Here B"R#H is the outer radius of the waveguide ("ber).
This paper deals with the long-wave approximation, and the conditions

kB@1, (5)

h/H@1, h/R@1, (6)

can be used to simplify the formulation of problem.
Consider the sound propagation in the boundary layer. The equation of motion

of boundary layer particles for R)r(R#h can be written as

1
r

L
Lr

(rp
rz

)#
Lp

zz
Lz

"!o@@@u2;
z
,

where o@@@ is the density of the boundary layer.
After integration of this equation over the cross-section of boundary layer one

obtains

2n(R#h)p
rz

(R#h)!2nRp
rz

(R)#P
S@@@

Lp
zz

Lzz
dS"!o@@@u2P

S@@@
;

z
dS, (7)

where dS is the element of area of the boundary layer cross-section, S@@@"2nRh is
the area of the boundary layer cross-section. When hP0, S@@@P0 and the
conclusion can be made that

P
S@@@

Lp
zz

Lzz
dS"

Lp*
zz

Lzz
S@@@P0 and !o@@@u2 P

S@@@
;

z
dS"!o@@@u2;*

z
S@@@,

upon taking into account the theorem about the mean value.
Thus, in equation (7) terms with order of small h can be neglected and

p
rz

(R#h)"p
rz

(R). (8)

In the same way the equation

p
rr
(R#h)"p

rr
(R) (9)

can be obtained.
Expressions (8) and (9) mean that tensions remain unchanged within the

boundary layer cross-section.
Consider the relation between displacements and tensions in the boundary layer

(interstitial layer of waveguide).
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In the boundary layer the following equation can be used:

p
rr
"j@@@A

;
r

r
#

L;
r

Lr
#

L;
z

Lz B#2k@@@
L;

r
Lr

. (10)

Here j@@@ and k@@@ are the LameH constants of the boundary layer material. In the thin
boundary layer (interstitial layer of the waveguide) (h@R, h@H, R)r)R#h)

;@
r
(R));

r
);A

r
(R#h), (11)

;
r
/R@L;

r
/Lr+[;A

r
(R#h)!;@

r
(R)]/h. (12)

;@
r
and;A

r
are the values of the radial displacement of "ber particles in the core and

cladding respectively.
Because kR@1, it can be concluded that

;
r
&;

z
, ;

r
/RAik;

z
, ;

r
/R@;

r
/h, (13}15)

L;
r
/Lr+D;

r
/hAik;

z
. (16)

Taking into account expressions (15) and (16), one obtains

p
rr
"(j@@@#2k@@@)[;A

r
(R#h)!;@

r
(R)]/h (17)

or

;
r
(R#0)!;

r
(R!0)"p

rr
(R)h/(j@@@#2k@@@). (18)

In the same way the following equation can be written:

;
z
(R#0)!;

z
(R!0)"p

rz
(R)h/k@@@ . (19)

Thus equations (18) and (19) relate displacements at the borders of boundary
layer with tensions inside the boundary layer. Besides that equations (8) and (9)
mean that the boundary layer is in static equilibrium if conditions (5) and (6) are
satis"ed.

This fact allows one not to consider the motion of the boundary layer and only to
solve the equations of motion of the core,

!o@u2;@
r
"(j@#2k@)
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Lr B , (20)
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where o@ is the density of core, u is the frequency of the waves, j@ and k@ are the
LameH constants of the core material, ;@

r
and ;@

z
are the values of ;

r
(r) and ;

2
(r)

relatively in the core, 0)r)R, and the equations of motion of the cladding,

!oAu2;A
r
"(jA#2kA)
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1
r

L
Lr

(r;A
r
)#
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Lr B , (22)
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Lr BB , (23)

where oA is the density of shell material, jA and kA are the LameH constants of the
shell.;A

r
and;A

z
are the values of ;

r
(r) and ;

z
(r) in the shell, R)r)R#H, and

satisfy boundary conditions (8), (9), (18), (19) and the conditions, representing the
absence of tensions at the outer border of "ber:

p
rr
(R#H)"0, p

rz
(R#H)"0. (24, 25)

According to reference [3], in the axisymmetrical case the solution of these
equations is
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where

h@
1
"

o@u2

j@#2k@
!k2, hA

1
"

oAu2

jA#2kA
!k2, (30, 31)

s@
1
"

o@u2

k@
!k2, sA

2
"

oAu2

kA
!k2, (32, 33)

and A
1
,2, A

6
are integration constants.

Substituting equations (26)} (29) into the conditions (8), (9), (18), (19), (24) and (25)
one obtains a homogenous system of six equations of "rst order with unknown
variables A

1
,2,A

6
.



Figure 1. Dispersion curves of optical "bers with boundary layer (three-layered waveguides).
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As is known, this system has nontrivial solution only if its determinant is equal to
0. This condition gives the dispersion equation, which relates the unknown variable
u with the wavenumber k.

The numerical solution of this dispersion equation is shown in Figure 1 with
solid lines. Calculations were made for values o@"2520 kg/m3, oA"1150 kg/m3,
k@"35 GPA, kA"0)9 GPA, j@"24 GPA, jA"3)6 GPA, taken from the reference
literature and values j@@@/h"0)07 GPA/m, k@@@/h"0)02 GPA/m (1a); j@@@/h"
0)42 GPA/m, k@@@/h"0)11 GPA/m (1b); j@@@/h"0)91 GPA/m, k@@@/h"0)36 GPA/m
(1c).

As can be seen from the "gure, the dispersion curve of the three-layer waveguide
(optical "ber with boundary layer) in the frequency range under consideration has
two branches, which correspond to two waves propagating in such a waveguide.

Solution of the above-mentioned system for f"u/2n13 kHz was made.
Constants A

1
,2, A

6
were found. The distribution of the displacements ;

r
(r) and

;
z
(r) over the cross-section was found for two branches of dispersion curve. These

distributions are shown in Figures 2 and 3.
It can be seen from these "gures that the displacements ;

r
(r) and ;

z
(r) remain

unchanged within the core and cladding: i.e.,

;
0z

(r)";@
z
, r3S@, (34)

;
0z

(r)";A
z
, r3SA, (35)



Figure 2. Distributions of axial displacements of waves corresponding to lower (a) and upper (b)
branches of dispersion curve and cut-o! frequency for second wave (c).

Figure 3. Distributions of radial displacements of waves corresponding to lower (a) and upper (b)
branches of dispersion curve.
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This fact allows one to construct an approximate analytical solution of the
problem of sound propagation in a three-layered waveguide. For this purpose the
equation of motion of "ber particles along the Z-axis should be rewritten in the
form

1
r

L
Lr

(rp
rz

)#
Lp

zz
Lz

"!o@,Au2;
z
. (36)
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The element of the waveguide (optical "ber) cross-section is denoted by dS. After
integration of this equation over S@, SA one obtains correspondingly

2nRp
rz

(R)#P
S{

Lp
zz

Lz
dS"!o@u2 P

S{

;
z
dS, (37)

!2nRp
rz

(R)#P
S{{

Lp
zz

Lz
dS"!oAu2 P

S{{

;
z
dS, (38)

The boundary condition

p
rz

(R#H)"0 (39)

should be taken into account when obtaining equation (38).
Suppose that values of p

zz
remain unchanged within the core and cladding:

p
zz
"E@ (L;

z
/Lz), r3S@, (40)

p
zz
"EA(L;

z
/Lz), r3SA. (41)

Taking into account equations (2), (34) and (35), one obtains

2nRk@@@
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!;@
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!k2E@;@
z
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z
S@, (42)

!2nRk@@@
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z
!;@

z
h

!k2EA;A
z
SA"!oAu2;A

z
SA, (43)

These two equations form a homogenous system with unknown variables;@
z
and

;A
z
. This system has a non-trivial solution if

u4!u2[(c2
1
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2
)k2#u2

0
]#k2
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#
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2
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1
c2
2
"0, (44)

where c2
1
"E@/o@, c2

2
"EA/oA, u2

0
"(2nRk@@@/h) ((1/o@S@)#(1/oASA)).
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g"u2, 2m"(c2
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2
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0
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1
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#
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2
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2
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Then

g2!2mg#q"0, g
1,2

"m$Jm2!q. (45, 46)
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Substituting equation (46) into equations (42) and (43), one obtains

;@
z
(1, 2)

;A
2
(1, 2)
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(c2
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1
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0
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2
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0
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where

SQR"S(c2
1
!c2

2
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#

u4
0

4
#(c2

2
!c2
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)k2

nRk@@@
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1
o@S@

!

1
oASAB .

The approximate analytical solution is shown in Figure 1 with circles. As can be
seen from "gure, the approximate analytical solution nearly coincides with the
exact numerical solution.

Solutions for a two-layered waveguide (optical "ber without boundary layer) can
easily be obtained from solution for the three-layered waveguide (optical "ber with
boundary layer) by assuming that k@@@/hPR, which is equivalent to hP0. In this
case one obtains instead of conditions (18) and (19) the conditions of ideal contact
of core and cladding:

;
r
(R#0)";

r
(R!0), ;

z
(R#0)";

z
(R!0). (48, 49)

These conditions are classical for problems of this type.
The dispersion curve for a two-layered waveguide (optical "ber without

boundary layer) is shown in Figure 4 for the same frequency interval and for the
same mechanical and elastic parameters of the waveguide as for the three-layered
waveguide (optical "ber with boundary layer). This dispersion curve has only one
branch.

One can now verify the calculations.
At "rst, one should verify equations (40) and (41), which were postulated to

construct approximate analytical solutions. According to these equations, in the
core and in the cladding a linear strained state exists. Radial displacements in this
state are described by the formulas

;
r
(r)"!ikv@;@

z
r, r3S@, (50)
Figure 4. Dispersion curve of optical "ber without boundary layer.
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and

;
r
(r)";A

r
D
r/R`0

!ikvA;A
z
(r!R), r3SA. (51)

As can be seen from Figures 2 and 3, angular coe$cients of the slope of straight line
segments correspond; see equations (50) and (51). Thus, equations (40) and (41) were
used legitimately.

The second veri"cation is that of the program used in calculations. It is based on
the fact that in case u"u

0
, k"0, and uniform distribution ;@

z
and ;A

z
over the

cross-section the following condition should be satis"ed

;@
z
/;A

z
"!oASA/o@S@ . (52)

The distribution ;
z
(r), obtained by numerical methods, is shown in "gure 2(c). It

fully corresponds to equation (52), and one can conclude that the program works
correctly.

The main result of this article is the conclusion that there are two types of
axisymmetrical waves which can propagate in a three-layered waveguide (optical
"ber with boundary layer). This conclusion seems quite logical because it is well
known that there is a set of normal waves in an optical "ber. The "rst two of them
have been discussed in this paper.

One of them is the so-called &&zero''wave with zero cut-o! frequency and uniform
distribution of ;@

z
and ;A

z
over the cross-section.

The other wave is nearest to the &&zero'' wave with a higher cut-o! frequency. The
square of the cut-o! frequency for this wave is proportional to k@@@/h. Increasing
k@@@/h can make the cut-o! frequency out of the experimental range. This fact should
be kept in mind during experimental veri"cation of the results presented in this
paper.

The calculations presented show that in the ultrasonic frequency range in an
optical "ber one axisymmetric longitudinal normal wave can propagate and in
a "ber with a boundary layer two waves can propagate. This fact can be used to
detect and study the boundary layer in optical "bers.
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